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Abstract. Modal based reduced order models are preferred for modelling structures in engineering problems due to their

computational efficiency. One of the important limitations of the classic modal based models is that they are linear and thus

can not fully account for the nonlinearities in structures. This study proposes a fast correction method to account for geometric

nonlinearities linked to large deflections in cantilever beam-like engineering structures. The large deflections cause secondary

motions such as axial and torsional motions when the structures go through bending deflections. The method relies on pre-5

computed correction terms and thus adds negligibly small extra computational cost to the time domain analyses of the dynamic

response. The accuracy of the method is examined on a straight beam benchmark model and an engineering wind blade model

for the IEA 15 MW wind turbine. The results show that the proposed method increases the accuracy of modal approach

significantly in estimating the secondary motions in comparison to the conventional modal based linear models.
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1 Introduction

Reduced order models (ROMs) based on modal approach is used in many structural engineering problems such as wind turbine

blades (Hansen, 2015), aircraft wings (Bisplinghoff et al., 2013), space crafts (Marshall and Pellegrino, 2021) due to their

computational efficiency and reasonable accuracy. Most of the existing ROMs are based on the small deflection assumption,

in other words the stiffness, mass and damping matrices are not updated by deflections. Hence, the accuracy of modal based15

ROMs reduces as deflections increase and their errors become significant for applications with large deflections such as long

and flexible wind turbine blades or aircraft wings. Moreover, the error in structural response amplifies the error in aeroelastic

response and load analysis due to the coupled nature of problem.

The large deflection effects on aeroelastic stability and loads for wind turbine blades (Kallesøe, 2011; Beardsell et al., 2016;

Collier and Sanz, 2016; Riziotis et al., 2008) and aircraft wings (Cesnik et al., 2014) are now well known. Although these20

effects can be modeled in some aeroelastic tools by using geometrically nonlinear structural solvers (Larsen and Hansen,

2019; DNV, 2016; Wang et al., 2017; Bauchau, 2009), linear modal based ROMs are still in use even for structures with large

deflections such as wind turbine blades (Øye, 1996; Jonkman and Buhl Jr, 2005) due to their speed.
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The focus of this study is cantilever beam structures and their reduced order models (ROMs) based on modal approach

used in coupled simulations such as aeroelasticity and load simulation of wind turbines and aircraft. A new correction method25

for capturing geometric nonlinear effects in these ROMs is proposed. The method has possible minimum computational cost

during the coupled analysis since it includes only some correction terms which don’t require any extra iteration during the

response analysis.

There are many studies in the literature on geometrically nonlinear ROMs and most of them focus on clamped-clamped

beams or simply supported panels. Table 1 shows some prominent works with cantilever structures from the literature. All30

of these studies, except Gözcü and Dou (2020) are limited to 2D beam models with forces applied in single direction or the

deflections do not exceed 25 % of beam span. Moreover, all the existing studies about geometrically nonlinear ROMs uses

nonlinear stiffness terms which require iterations and slow down the computation of response analysis. The proposed method

may be less accurate compared to the ROMs with nonlinear stiffness terms, however it is very fast and easy to implement to

existing aeroelastic tools compared to them.35

Table 1. Overview of the studies with geometrically nonlinear ROMs for cantilever structure models. The methods, reduction bases and

example structures used in the reference studies are given together with applied forces and maximum deflections in terms of span length.

Reference Method
Reduction

basis

Example

structure

Force

direction

Max.

deflection

Kim et al. (2009)

Displacement based

Non-intrusive with

von Karman kinematics

Bending modes +

Dual modes

2D straight

beam

1 bending

direction
50% of span

Wang et al. (2013)

Displacement based

Non-intrusive with

von Karman kinematics

Bending modes +

Dual modes

An unmanned

aircraft wing

1 bending

direction
25% of span

Jain et al. (2017a)
Intrusive with

von Karman kinematics

Quadratic basis &

Modal derivatives
A wing model

1 bending

direction
2% of span

Rutzmoser et al. (2017)
Intrusive with

von Karman kinematics

Different quadratic

bases

2D straight

beam

1 bending

direction
30% of span

Wu et al. (2018)
Intrusive with

von Karman kinematics

Rubin basis +

Modal derivatives

NREL 5MW

blade

2 bending

direction
1% of span

Gözcü and Dou (2020)
Force based

Non-intrusive

Linear modes +

Modal derivatives

3D straight beam

NREL5MW blade

2 bending

directions
20% of span

This study
Linear approach

Correction terms
Linear modes

3D straight beam

IEA15MW blade

2 bending

directions
20% of span
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All studies given in Table 1 include nonlinear stiffness terms in the calculation and use either intrusive approach (Jain et al.,

2017b) or non-intrusive approach (Mignolet et al., 2013) to compute these terms. This study uses linear approach which is

same as the existing ROM analysis and it needs only linear modes in its reduction basis unlike the other studies given in the

table.

The paper is divided into four sections. The kinematics of cantilever beam problem relevant to this study is explained in40

Section 2 and the proposed method is explained in Section 3. Example cases are introduced and their results are given together

with discussion in Section 4 and the conclusion takes place in Section 5.

2 Relevant Kinematics

This section explains the kinematics of cantilever beams, geometric nonlinearities effects for symmetric beams and initially

curved beams such as wind turbine blades.45

Most of the research studies about geometrically nonlinear ROMs focus on clamped-clamped beams or simply-supported

plates. In clamped-clamped case, the nonlinearity arises due to the length change where a lateral deflection actually alters the

length of the structure which causes additional stiffness effect such as hardening or softening depending on the sign of length

change. This effect is called as membrane effect or bending-extension coupling (Touzé et al., 2021). In case of cantilever beams,

lateral deflection due to lateral forces doesn’t result in length change (no axial strain), so there is no bending-extension coupling50

for cantilever beams. However, the free end of a cantilever beam displaces in beam span direction to keep the length constant

when it bends as shown in Figure 1. In other words, the cantilever beams with lateral loading go through large rotations which

don’t result in strain.

The large rotations of cantilever beams change the geometry of the structure. For instance, an initially symmetric beam

doesn’t behave as one in its deflected state, so it can show bending-torsion coupling. Figure 2 depicts these kinematics using a55

Figure 1. Displacements of a cantilever and a clamped-clamped beam under lateral distributed loads F . The deflected beam length (Ldef ) is

equal to the undeflected length (Lundef ) for the cantilever beam, resulting in zero axial strain. The clamped-clamped beam has axial strain

due to elongation in beam length.
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Figure 2. Illustration of beam deflections in lateral (x−, y−) directions and the resulting torsional motion due to the bending/torsion coupling

at the deflected state. The coordinate system is given at beam root where no deflection occurs.

straight cantilever beam. The lateral force (Fx) deflects the beam to State-1. Subsequently, Fy force which is perpendicular to

Fx, is applied on the beam and beam reaches its Final State. It is observed that the beam motions occur not only in lateral (x−,

y−) directions but also in torsion direction, even though no torsion load applied on the structure. Geometrically linear models

(such as ROMs based on modal approach) fail to capture such kinematics.

These kinematics become even more prominent for applications such as wind turbine blades which are initially curved60

structures due to prebend, aerodynamic twist and back swept. They have couplings between bending and torsion motions at

their undeflected states already due to their curved and twisted geometry but the lateral deflections change the magnitude as

well as the direction of these couplings. Figure 3 shows the torsion deflection due to the combination of flapwise and edgewise

deflections of a wind turbine blade with prebend at its deflected position. The edgewise and torsion motions are already coupled

for a blade with prebend at its undeflected state as shown by blue dashed lines in the figure, however this coupling first reduces65

and even change its sign by flapwise bending as shown by red continuous lines. This also alters aeroelastic stability and loads

of the blades in an aeroelastic analysis (Kallesøe, 2011) and it becomes significant for very flexible wind turbine blades. In case

geometrically linear models like classical ROMs based on modal reduction are used, the change of torsion-edgewise coupling

cannot be captured.

3 Method70

The nonlinear geometric effects on a cantilever beam can be captured by nonlinear ROMs using different methods (Intru-

sive or Non-intrusive see Table 1) and reduction basis where linear modes are used together with quadratic vectors such as

Expansion modes (Hollkamp and Gordon, 2008) or Modal derivatives (Idelsohn and Cardona, 1985). It is ob-

served that effect of nonlinear stiffness terms are not significant for moderately large deflections of a cantilever beam. On the

other hand, the geometric nonlinear effects on deflections explained in Section 2 are apparent for cantilever beams undergo-75
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Figure 3. Illustration of a wind turbine deflections in flapwise (y−) and edgewise (x−) directions and the resulting torsional motion due

to the bending/torsion coupling at the deflected state. The lateral (x−, y−) and axial (z−) directions are given in blade root coordinates.

The effective blade length is the projected length onto the root coordinate system in the axial direction. The edgewise/torsion coupling at the

initial blade position (blue dashed line) has an opposite direction in comparison to the edgewise/torsion coupling at the deflected blade (red

continuous line) position.

ing through moderately large deflections. Hence, the proposed method uses linear mode shapes and linear stiffness, mass and

damping matrices for response calculation and quadratic vectors are added to the linear response results to capture large de-

flection effects. In the studies where intrusive methods are used, Modal derivatives are generally preferred as quadratic

vectors. For non-intrusive methods, the main purpose is to obtain nonlinear effects from some static solutions and in this study

performance of Expansion modes are investigated. The formulation and calculation process of these vectors are explained80

below.

3.1 Modal derivatives

The modal derivatives (MDs) are quadratic vectors which include secondary effects that occur due to large deflections (geomet-

ric nonlinearities) (Idelsohn and Cardona, 1985). The quadratic relation needs to be written between physical displacements

(u) and modal amplitudes (q) for defining modal derivatives. So, they can be thought of as second derivative of physical85

displacements (u) with respect to modal amplitudes (q) when the displacements are represented as a function of modal ampli-

tudes. When Taylor series expansion of the displacements around an equilibrium state (u0 = u(q0)) are written, the first term

(u(q0)) is the equilibrium state, the first derivative represents the linear mode shapes and the second derivative term includes

5
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the modal derivatives as shown in equation (1).

u(q)≈u(q0) +
∂u

∂q

∣∣∣∣
q0

· (q− q0) +
1
2

(
∂2u

∂q∂q

∣∣∣∣
q0

· (q− q0)

)
· (q− q0) +O(∥q∥3)

=u(q0) +Φ · q +
1
2

(
∂Φ
∂q

· q
)
· q +O(∥q∥3)

(1)90

In this study, the equilibrium state is taken as the initial state where u0 = 0 (undeflected state) and equation (1) can be written

in terms of mode shapes and their derivatives at the initial state as

u(q)≈Φ · q +
1
2

(
∂Φ
∂q

· q
)
· q +O(∥q∥3) (2)

The linear mode-shapes (Φ) and corresponding natural frequencies (ω) can be found by the generalized eigenvalue solution,

95

(K −ω2
i M)ϕi = 0 (3)

where K, M are the tangential stiffness and mass matrices and ωi, ϕi are the ith eigenvalue and corresponding eigenvector

(mode-shape vector). The stiffness and mass matrices are computed at the initial state (u0 = 0). The modal derivatives are

calculated by taking the derivative of eigenvalue problem shown in equation (3) with respect to modal amplitude qj .

∂

∂qj

(
(K −ω2

i M)ϕi

)
=
(

∂K

∂qj
− ∂ω2

i

∂qj
M −ω2

i

∂M

∂qj

)
ϕi + (K −ω2

i M)
∂ϕi

∂qj
= 0 (4)100

To determine the derivative of ϕi and ωi with respect to the jth modal amplitude qj , another equation is needed. This equation

can be chosen as equation (5) where ϕi is the mass normalized mode shape vector.

∂

∂qj
(ϕT

i Mϕi) = 2ϕT
i MT ∂ϕi

∂qj
+ ϕT

i

∂M

∂qj
ϕi = 0, where ϕT

i Mϕi = 1 (5)

When the equation (4) and (5) are combined, the modal derivative of ith mode shape vector ϕi and natural frequency ωi

with respect to the jth modal amplitude can be determined by105




(K −ω2
i M) −Mϕi

−(Mϕi)T 0







∂ϕi

∂qj

∂ω2
i

∂qj


=



−∂K

∂qj
ϕi + ω2

i

∂M

∂qj
ϕi

1
2ϕT

i
∂M
∂qj

ϕi


 (6)

Equation (6) contains all the terms that are required to compute the modal derivatives. The derivation of modal derivatives is

similar to the derivation of the sensitivity of eigenmodes and eigenfrequencies with respect to a design variable in structural

optimization.

For computation of modal derivatives, the terms related to inertia effects (i.e. mass matrix and its derivatives) are generally110

ignored, since their contribution to the modal derivatives is very limited (Rutzmoser et al., 2017). The derivative of the eigen-

value can also be assumed to be zero due to the fact the eigenfrequencies of the slender cantilever beams are not sensitive to
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the vibration amplitude. These assumptions lead to static modal derivatives which are symmetric whereas modal derivatives

computed from equation (6) are not necessarily symmetric.

∂ϕi

∂qj
=−K−1 ∂K

∂qj
ϕi (7)115

For convenience of communication, the static modal derivatives are simply called ‘Modal Derivatives (MDs)’ hereafter. In

equation (7), the derivative of the stiffness matrix with respect to the modal amplitudes, i.e. ∂K
∂qj

, is needed to compute the

modal derivatives. In this study, the derivative of stiffness matrix (K) with respect to jth modal amplitudes (qj) are computed

by central finite difference given in equation (8). The stiffness matrix at the deflected state of the structure by a given amplitudes

of δj are computed with a geometrically nonlinear beam solver based on co-rotational formulation in (Krenk, 2005).120

∂K

∂qj
=

K(ϕjδj)−K(−ϕjδj)
2δj

(8)

where K(ϕjδj) is the tangential stiffness matrix when the system displacements equal to ϕjδj . The calculation of ∂K
∂qj

from

equation (8) is the only step where a geometrically nonlinear solver is required. When the stiffness matrix derivatives are

ready, the computation of equation (7) is straight forward since the rest of the equation consists of stiffness matrix and linear

eigenvectors at undeflected state. The tangential stiffness matrix at undeflected state is actually the linear stiffness matrix which125

is used in existing modal approaches. There are MMD number of modal derivatives for M number of linear mode-shapes. The

relation between M and MMD can be written as,

MMD =
M × (M + 1)

2
(9)

Figure 4 and 5 are used to give visual understanding for the modal derivatives. Figure 4 shows bending of a straight beam with

airfoil cross-section in one direction and its representation by a linear bending mode and modal derivative of that mode shape130

with respect to its modal amplitude (∂ϕi

∂qi
). The linear bending mode shape doesn’t have any displacement in axial direction,

so the total beam length increases. The modal derivative vector of the bending mode-shape includes axial displacement effect.

When the linear bending mode and its modal derivative is summed, the axial displacement and bending effects are captured

together.

Figure 5 shows similar effects with Figure 4 but this time the forces are applied in two bending directions at the same time.135

Hence, together with axial displacements, there is also torsion effect due to the couplings at deflected state. Modal approach is

only capable of capturing the bending deflections in two lateral (x− and y−) directions. The axial displacements are captured

by the modal derivatives of bending mode shapes with respect to their modal amplitudes as in Figure 4, whereas the torsion

effects are included in the cross modal derivative vectors which are derivative of a bending mode-shape with respect to the

modal amplitude of a bending mode in other direction (∂ϕi

∂qj
).140

3.2 Expansion modes

Expansion modes are similar to modal derivatives, but they are computed by a non-intrusive approach Hollkamp and Gordon

(2008). Expansion modes are computed from the difference (error) between deflections computed by linear ROMs and nonlin-
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Figure 4. Bending deflection of a straight beam and its representation by linear mode shape and its modal derivatives.

Figure 5. Bending deflections of a straight beam in lateral (x− and y−) directions and the representation of the deflections by linear mode

shapes and their modal derivatives.

ear deflections. The difference is written as a function of selected order of modal amplitudes. In this study quadratic (2nd order)

relation is defined between modal amplitudes and nonlinear deflections. Nonlinear deflections are obtained for static cases by145

using a geometrically nonlinear solver. In expansion mode approach, the physical displacements are represented as shown in

equation (10),

u(x,t)≈Φ(x)q(t) +ΦEM (x) qE(t) (10)

where Φ(x) and ΦEM (x) are the matrices whose columns are the linear and expansion mode-shape vectors. The expansion

mode amplitudes qEM which are quadratic functions of bending modes, can be written for M linear mode amplitudes as150

qE =
[
q2
1 q1q2 . . . q1qM q2

2 q2q3 . . . q(M−1)qM q2
M

]T
(11)

where the qi is the ith linear mode amplitudes.The relation between number of linear modes (M ) and number of expansion

mode (MEM ) corresponding to them can be written as,

MEM =
M × (M + 1)

2
(12)

So, there are same number of modal derivatives and expansion mode vectors for the same number of linear modes, since both155

of these vectors represents the quadratic relation between deflections and modal amplitudes. The linear mode shape amplitude
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can be computed from static ROM formulation,

ΦT KΦq = ΦT f = Krq = fr

q = K−1
r fr

(13)

where K and Kr are the full and reduced stiffness matrices, and f and fr are the full and reduced force vectors. When the

applied forces (f ) are known, q can be computed. The applied forces are chosen as a combination of linear modal shapes (Φ)160

for quadratic relation of expansion modes and can be determined from,

f = K(λiΦi + λjΦj) (14)

where λi and λj are force amplifiers for ith and jth linear mode-shape. Linear modal amplitudes (q) and corresponding ex-

pansion modal amplitudes (qE) can be computed for Nk number of static solutions from selected combinations of λi and λj .

The nonlinear displacements (u) of these load cases are also computed from co-rotational code. All static load case displace-165

ments and modal amplitude results can be collected in matrices U ∈ RN×Nk , Q ∈ RM×Nk and QEM ∈ RMEM×Nk where the

columns of the matrices are the each load case displacement and modal amplitude results. The all load case results in matrix

form can be written as,

U(x)≈Φ(x)Q +ΦEM (x)QEM (15)

Equation (15) includes displacement, modal amplitude and expansion mode amplitude matrices instead of their vector forms170

in eq. (10). The expansion mode shapes can also be determined by least square method,

ΦEMQEM = U −ΦQ−→ minimize
ΦEM∈RN×ME

∥U −ΦQ−ΦEMQEM∥ (16)

where ∥ ∥ denotes the 2-norm of the vector and it is solved for Modal expansion matrix ΦEM . Modal expansion vectors are

very similar to the modal derivative vectors and they become same (except numeric differences) if the set of ith and jth are

symmetric and force amplitudes λi and λj are small enough. The computational cost of expansion modes are more expensive175

than modal derivatives since their calculation requires more static solutions than modal derivative calculation. Although the

difference in computational cost is little for a small number of linear modes (M ), it becomes clear for a large number of linear

modes. On the other hand it is easy to expand the relation between nonlinear displacement and expansion modes so that one

can use higher order of relation between modal amplitudes and deflections than second order relations given in equation (11).

3.3 Numerical implementation180

As mentioned before modal derivatives or expansion mode-shapes are not included into the reduction space and linear mass

(M ), stiffness (K) and damping (C) matrices are used for the response analysis. This isn’t the case for other studies in the

literature (see Table 1). Although nonlinear stiffness terms and including the quadratic vectors in reduction space lead to very

accurate results, this approach is computationally heavy not only for the computation of nonlinear stiffness terms before time

simulations, also during time simulations where extra iterations are needed due to nonlinear stiffness terms. Since there are185
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thousands of load simulations required for a wind turbine (Hansen et al., 2015) or aircraft, computational cost increase in

time simulations are not desired. Therefore the proposed method is very suitable for load and aeroelasticity analysis due to its

simplicity and low computational cost compared to the methods found in the literature.

In this method, modal derivative or expansion mode vectors are used only in post-process step where displacements are com-

puted from modal amplitudes and mode-shape vectors. Algorithm 1 show computation of structural response with quadratic190

correction vectors. In this study, modal derivative and expansion mode vectors are used as quadratic correction vectors.

Algorithm 1 Response calculation with quadratic correction vectors

– Model generation step (time independent and done once)

1. Generate linear ROM from finite element model:

(a) Compute mode-shape vectors (ϕi) from (K −ω2
i M)ϕi = 0

(b) Compute reduced order stiffness Kr , mass Mr and damping Cr matrices by Galerkin projection :

Kr = ΦTKΦ, Mr = ΦTMΦ, Cr = ΦTCΦ

2. Compute quadratic vectors:

(a) For modal derivatives see section 3.1

(b) For expansion modes see section 3.2

– Pure structural response analysis

1. Compute modal amplitudes for linear ROM by solving equation of motion:

Mrq̈(t)+Crq̇(t)+Krq(t) = ΦTf(t) = fr(t)

2. Compute displacements by using linear mode-shapes, quadratic vectors and modal amplitudes :

With MDs : u(x,t) = Φ(x) · q(t)+ 1
2

(
∂Φ
∂q

· q(t)
)
· q(t)

with EMs : u(x,t) = Φ(x)q(t)+ΦEM (x) qE(q)

The calculation of displacements (u(x,t)) doesn’t have to be done at each time step and can be performed after the time

simulations.

– Coupled response analysis (time dependent)

1. Compute modal amplitudes for linear ROM by solving equation of motion:

Mrq̈(t)+Crq̇(t)+Krq(t) = ΦTf(t,x) = fr(t,x)

2. Compute displacements by using linear mode-shapes, quadratic vectors and modal amplitudes :

With MDs : u(x,t) = Φ(x) · q(t)+ 1
2

(
∂Φ
∂q

· q(t)
)
· q(t)

with EMs : u(x,t) = Φ(x)q(t)+ΦEM (x) qE(q)

3. Update loads (f(t,x)) and go to step-1 unless simulation end time is reached
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4 Results and Discussion

The proposed method is tested for a straight beam and IEA15MW wind turbine blade under static and dynamic loads. The

displacement results in main loading directions and nonlinear geometric effects especially in axial and torsion directions

are given to evaluate the effects of modal derivatives and expansion modes. The reduced order model results are compared195

with HAWC2 results for both static and dynamic cases. HAWC2 (Larsen and Hansen, 2019) is a aero-servo-hydro-elastic

load analysis tool for wind turbines and developed by DTU Wind and Energy Systems. It uses multibody formulation with

Timoshenko beam and can capture geometric nonlinearities (Pavese et al., 2016). In HAWC2, z− axis is along the axial

direction whereas x− and y− directions are lateral directions (see Figure 3 for HAWC2 coordinate system). After the results

of test cases, the benefits and limitations of the method is discussed in section 4.3.200

4.1 Straight beam

A cantilever straight beam model is used for static and dynamic load cases. Table 2 shows the general properties of the beam

whose cross-section properties are constant along the beam length and shear coefficients are very high compared to the bending

stiffness values, so it behaves like an Euler-Bernoulli beam.

Table 2. Straight beam geometry and cross-section stiffness properties. Beam is clamped from its root.

Length Unit mass EIxx EIyy GJ

[m] [kg/m] [Nm2] [Nm2] [Nm2]

10.0 172.4 215×104 869×103 416×104

Figure 6 shows x−, y−, z− displacement and torsion motion components of the first two mode-shape vectors of the beam.205

Since the beam is straight and has no material coupling, both bending mode-shapes have only one lateral direction components

without any axial or torsion component. First mode-shape is in x− direction and second one is in y− direction.

Figure 7 shows modal derivative (MD) and expansion mode (EM) vectors for first two mode-shapes. The results are very

similar for MD and EM vectors. These vectors show the sensitivity of a mode-shape with respect to a modal amplitude. The

vector names are given so that the first number represents the mode number for linear mode-shape vector whose sensitivity is210

computed with respect to the modal amplitude of the mode number which is given as the second number in the vector names.

Hence, MD-1-1, MD-2-2, EM-1-1, EM-2-2 shows the sensitivity of a mode-shape with respect to its own modal amplitude

whereas the MD-1-2 and EM-1-2 illustrate the sensitivity of a mode-shape with respect to another mode’s modal amplitude.

Since, MD-2-1 and MD-1-2 are same for static modal derivatives only MD-1-2 results are shown here. This symmetry case

is also valid for expansion modes (EMs), since they are also computed for static cases. MD-i-i and EM-i-i vectors have only215

axial displacements since their mode-shapes are only in one lateral direction. On the other hand, MD-i-j and EM-i-j have only

torsion motions which represents the coupling between two lateral directions.
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Figure 6. x−, y−, z− and torsion components of first two mode shapes of the straight beam.

The first test was carried with static loads in x− direction. The applied force vectors are determined from stiffness matrix

(K), first mode shape Φ1 and amplification factor (λ) as,

Fx = λKΦ1 (17)220

where mode-shape Φ1 is normalized according to its maximum value.

Expansion mode-shape and modal derivative results are same for this test case, therefore they are given together in Table 3

which shows the tip displacements for linear ROM without corrections (Lin.), modal derivative (MD) and expansion mode (EM)

results and HAWC2 results. Modal derivative, expansion mode and linear ROM results are same for lateral (x−) deflections

due to uncoupled mode-shapes which result in zero values in lateral direction components (see Figure 7). On the other hand,225

the axial (z−) deflection is a secondary effect and captured by correction vectors from modal derivatives and expansion modes.

Linear ROM error in x− direction increases as the deflections increases and it is less than 5% for deflections around 20% of

beam length. Moreover linear model cannot capture any axial displacement whereas correction factors work quite well.

Figure 8 shows x− and z− (axial) positions of the structural nodes computed from HAWC2, linear ROM, MD and EM

models for λ = 2 and λ = 3 load cases. The quadratic corrections (MDs and EMs) capture the secondary effects all along the230

beam length.
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Figure 7. x−, y−, z− and torsion components of modal derivative and expansion mode vectors. MD-1-1, MD-2-2, EM-1-1, EM-2-2 vectors

have only axial displacements and MD-1-2 and EM-1-2 vectors have onlyt torsion components.

Table 3. Straight beam lateral (x−) and axial (z−) tip deflection results for HAWC2, linear model, MD and EM corrections.

λ x-HAWC2 x-Lin./MD/EM x-error z-HAWC2 z-MD/EM z-Lin.

1 0.991 1.000 0.9% -0.057 -0.059 0.0

2 1.933 2.000 3.35% -0.218 -0.236 0.0

3 2.790 3.000 7.0% -0.459 -0.530 0.0

The second test case includes static loads in x− and y− directions. The load components are determined by similar formu-

lation given in equation (17). The x− force components are amplified by λ = 2.5 and the y− force components are amplified

by λ = 1.0. Figure 9 shows x−, y−, z− displacements and torsion deflections along the beam length. Linear model estimates

x− and y− displacements quite accurately and quadratic vectors don’t alter results in these directions since they don’t have235

components in these directions (see figure 7). On the other hand they capture the secondary effects in z− and torsion directions

due to geometric nonlinearities. Linear ROM cannot capture any axial (z−) displacement or torsion motion. On the other hand,

MD and EM corrections result in accurate estimation of secondary effect even though the loads are applied in two directions.

Results show that the quadratic correction vectors can also capture the couplings between different directions.
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Figure 8. Straight beam x− and z− (axial) positions for λ = 2 and λ = 3 load cases. The positions are shown for HAWC2, linear ROM,

MD and EM corrections.
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Figure 9. Straight beam x−, y−, z− displacements and torsion motion results along the beam span. The static load has x− and y−
components.
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Figure 10. Straight beam dynamic analysis tip x−, y−, z− displacements and torsion deflections for HAWC2, linear ROM, MD and EM

corrections.

The last load case with straight beam model includes dynamic loads in two lateral directions. The x− direction load is240

constant with λ = 2 whereas the y− direction load is computed as,

Fy(t) = Mg sin(ωt) (18)

where M is mass matrix, g is acceleration vector, ω is the rotation frequency of the beam. For this example the gravity vector

has only y− acceleration with value of 9.81 ms−2, and ω is taken as 1 rads−1. The simulation time step is 0.01 s.

Figure 10 shows tip x−, y−, z− displacements and torsion deflections for 100 seconds. Linear model can capture dynamics245

in y− direction very accurately, and its x− direction results are very close to HAWC2 results without any fluctuations after

60 seconds which cannot be captured without nonlinear stiffness terms (Gözcü and Dou, 2020). However these fluctuations

are very small compared to the overall displacements in x− direction. On the other hand, linear ROM results are again zero in

axial and torsion directions whereas MD and EM corrections work very well even for initial transition period. Moreover, there

is no phase difference between HAWC2 and MD/EM results which support that the nonlinear stiffness effects are very small250

for cantilever beams with moderate deflections. The fluctuations in x− direction due to nonlinear stiffness term effects shows

the limitation of this method even though the fluctuations are very small.
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4.2 IEA15MW wind turbine blade

IEA15MW wind turbine blade is modeled as beams in HAWC2 and FAST for load analysis (Gaertner et al., 2020). It is more

complex and realistic structure in comparison to the beam studied in Section 4.1. The blade has material coupling terms and255

initially curved shape due to prebend (mostly in y− direction), aerodynamic twist and backswept (mostly in x− direction).

Hence, the blade mode-shapes are coupled in x−, y−, z− and torsion directions unlike the straight beam example. Besides, its

cross-section stiffness properties change over the span and material couplings between lateral bending directions and torsion

brings additional couplings in mode-shapes. Table 4 shows the relevant blade properties and details of the design can be found

in (Gaertner et al., 2020).260

Table 4. IEA15MW turbine blade dimensions, mass and initial curvature limits in prebend (y−) and twist directions.

Length Mass Tip prebend Max chord Twist range

[m] [ton] [m] [m] [deg]

117 44.7 4.00 5.77 -15 to 2

Figure 11 shows first two blade mode-shapes which are coupled due to its geometry and cross-section material couplings.

The first blade mode-shape is mainly in y− (flapwise) direction with 0.5 Hz whereas the second mode-shape is mainly in x−
(edgewise) direction with around 0.7 Hz. Moreover, both mode-shapes have components in all directions including z− (axial)

and torsion directions. Second mode-shape torsion coupling is much stronger than the first mode-shape’s coupling whereas it

has weaker coupling in axial direction than the first mode-shape.265

Figure 12 shows x−, y−, z− and torsion components of modal derivative and expansion mode vectors for first two mode-

shapes. MD and EM vectors are very similar and they include components in all directions due to the couplings.

The blade loads include aerodynamic loads at steady 11 ms−1 wind speed which gives the highest thrust force for the the

dynamic load case. The steady aerodynamic loads for symmetric rotor (no tilt, now yaw) is time independent (static) and their

torsion components are not included for this example so that the torsion due to mode-shape couplings and dynamic forcing is270

more clear for this example. On top of the aerodynamic loads, the weight of the blade is applied in x− (edgewise) direction

with the formulation given in equation (18) where ω is 1 rads−1.

Figure 13 shows the tip displacement results of the blade in edgewise (x−), flapwise (y−), axial (z−) and torsion directions

for linear ROM, HAWC2 and correction models. Since most of the thrust force is in flapwise direction, the largest displacements

occur in that direction with mean displacement around 13.4 m for last 50 s. The fluctuations in y− direction is mostly due to275

couplings between mode-shapes, in other words it is mostly due to linear stiffness effects and not coming from the nonlinear

stiffness effects which is the case for straight beam example (see Figure 10 x− direction results). Since nonlinear stiffness

effects are very small in x− and y− displacements, the results are very similar in terms of magnitude and phase for all

models. The secondary effects become clear in z− (axial) and torsion directions. The linear model has 0.84 m mean tip axial

displacement for last 50 s due to mode-shape couplings (see figure 11), however HAWC2 model has −0.41 m mean tip axial280
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Figure 11. x−, y−, z− and torsion components of first two mode shapes of IEA15MW blade.

displacements for the same time period. Hence, linear ROM estimates 2.5 m larger rotor diameter compared to HAWC2. Modal

derivative correction model has −0.29 m and expansion mode correction model has −0.23 m mean axial (z−) displacements.

They also represents the fluctuations in z− directions much more accurately compared to the linear model which has almost

no fluctuations for last 50 s. Linear model maximum tip torsion error compared to HAWC2 for last 50 s is about 1.36°. The

maximum tip torsion error of MD and EM models for last 50 s are 0.63° and 0.26°, respectively. The correction modes also285

capture the torsion motion phase more accurately than the linear model which is out of phase with HAWC2 in torsion direction.

First 15 linear mode-shapes are used in the blade analysis and quadratic vectors for first three modes are included since these

modes have very high modal amplitudes among all. Average modal amplitude values of first seven mode-shapes for the last

50 s of dynamic analysis are given in Table 5. Other mode-shapes have much less average values than 0.2.

Table 5. IEA15MW blade mean modal amplitude results for last 50 s of the analysis

q1 q2 q3 q4 q5 q6 q7

12.44 1.13 0.74 -0.17 0.23 0.28 0.34
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Figure 12. x−, y−, z− and torsion components of modal derivative and expansion mode vectors

Figure 14 and figure 15 show the displacement results over the blade span at the two selected time steps where minimum and290

maximum torsion deflections are obtained in the last 50 s from HAWC2 (see Figure 13). These time steps also correspond to

maximum and minimum edgewise displacements. Figure 14 shows displacement results along the blade span at 67.51 s where

the maximum tip torsion occurs. Linear ROM results are quite accurate except z− and x− displacement. On the other hand,

MD and EM results are much better than linear ROM results in all directions. Linear ROM has 1.2 m error in z− direction at

blade tip whereas MD and EM errors are less than 0.17 m for blade tip.295

Figure 14 shows displacement and torsion results along blade span at the maximum tip torsion moment (70.56 s in Figure

13). Linear ROM is quite accurate in x− and y− direction, however it has low accuracy in z− and torsion directions. Its total

torsion error over the blade span is 33.6° whereas MD error is 7.7° and EM error is 1.7° along the blade span compared to

HAWC2 results. The z− direction results are similar to minimum torsion moment results in Figure 15.

One of the findings in Figure 10 and Figure 13 is that the frequency of the vibration is not affected by the large deflections300

of the blade. Even the linear model can predict the vibration frequency or the time period of the periodic response in good

agreement with HAWC2 simulation in main deflection directions. In practice, this means that no correction is needed for the

vibration frequency in case of large deflections. This also suits the application of the proposed correction method to a variety

of slender cantilever structures including wind turbine blades. Besides, this allows using correction terms to capture secondary
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Figure 13. IEA15MW blade tip x−, y−, z− displacements and torsion motion results for HAWC2, linear ROM, MD and EM corrections.

effects due to geometric nonlinearities for moderately large deflections. On the other hand, linear ROM has wrong phase in305

secondary deflections directions such as axial and torsion directions whereas correction terms correct the phase and magnitude

of deflections in those directions.

In this study, the load time series are prescribed and not updated with deflection. In other words, the results are not obtained

for an aeroelastic analysis. It is known that the importance of torsion motion will increase for an aeroelastic analysis. The

difference in mean torsion results are critical in static aeroelastic analysis where the steady operating conditions are determined.310

On the other hand, the difference in torsion fluctuations will affect the damage equivalent loads Gozcu and Verelst (2019) and

aeroelastic stability analysis Kallesøe (2011).

4.3 Benefits and Limitations

Results show that the proposed method improves the accuracy of linear cantilever beam models with simple corrections es-

pecially in axial and torsion directions in which the secondary effects are more apparent. Moreover, results corroborate the315

assumption that the nonlinear stiffness effects in bending directions are not very critical for cantilever beams undergoing mod-

erately large deflections. This is shown by figures 10 and 13 and seems to be valid for the cases studied in this work (deflections

reaching up to 25 % of the beam length). So, the method captures secondary effects in axial and torsional directions due to
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Figure 14. Spanwise deflection results at the time when the maximum torsion occurs 67.51 s

bending deflections when the linear bending deflections are captured accurately enough. Because the method is based on linear

vibration modes and modal derivatives (or expansion modes), it is suitable for deformation and vibration up to a moderate320

level.

Although the method allows capturing geometrically non-linear effects for the given examples, it doesn’t include any non-

linear stiffness, damping or inertia terms in response computation. Hence it shouldn’t be considered as a general geometrically

nonlinear method. For instance, small fluctuations in x− bending direction for straight beam dynamic case (see figure 10)

cannot be captured by the method since these dynamics require nonlinear stiffness terms in response computation. Moreover,325

it is intended for cantilever beam-like structures, and thus not suitable for structures such as clamped - clamped beam-like

structures.

5 Conclusions

This study introduced a correction method for capturing geometric nonlinear effects for reduced order models of cantilever

beams which go through moderately large deflections. The method includes quadratic correction vectors which includes nonlin-330

ear effects. Two different quadratic vectors, modal derivatives and expansion modes, were investigated in this study. Correction
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Figure 15. Spanwise deflection results at the time when the minimum torsion occurs 70.56 s

vectors for both methods are computed once by using a geometrically nonlinear beam solver. Therefore their computation cost

becomes insignificant when it is compared to the computational cost of thousands aircraft wing or wind turbine blade aeroelas-

tic simulations. The advantage of this method is its speed and simplicity, and it is considered as a quite convenient correction

for aeroelastic analysis tools which uses modal based reduced order models for aircraft wings or wind turbine blades.335

The proposed method is tested with a straight beam which has uncoupled mode-shapes and IEA15MW turbine blade which

has coupled mode-shapes due to its geometry and cross-section stiffness matrix. In the straight beam example, modal deriva-

tives and expansion modes have very similar results and they captured geometrically nonlinear (secondary) effects very accu-

rately for lateral deflections up to 25 % of beam length. IEA15MW blade results showed that linear ROM axial results are in

opposite direction compared to HAWC2 results and it estimates 1.25 m longer blade than HAWC2. Correction models have340

very good estimation for axial displacements of the blade. Besides, linear model torsion results are out of phase with HAWC2

results where correction models are in-phase. These results show that the proposed corrections increases accuracy of cantilever

beam reduced order models significantly especially for structures with coupled mode-shapes. On the other hand, the method is

not suitable for the cases where the nonlinear stiffness or inertia or damping terms have substantial effect on response since it

uses only linear terms in response computation.345
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The study can be expanded with implementation of the correction terms into an aeroelastic tool which uses reduced order

models for airplane wings or wind turbine blades. Alternatively, the proposed correction methods can also be implemented

based on machine learning approaches such as neural network models or adaptive kiriging methods.
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